Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor.
نویسندگان
چکیده
The regulation of the inositol 1,4,5-trisphosphate (IP3) receptor in liver was analyzed using a novel superfusion method. Hepatic microsomes were loaded with 45Ca2+, and superfused at high flow rates to provide precise control over IP3 and Ca2+ concentrations ([Ca2+]) and to isolate 45Ca2+ release from reuptake. 45Ca2+ release was dependent on both [Ca2+] and IP3. The initial rate of 45Ca2+ release was a biphasic function of [Ca2+], increasing as [Ca2+] approached 3 microM but decreasing at higher concentrations, suggesting that the hepatic IP3 receptor is regulated by [Ca2+] at two sites, a high affinity potentiation site and a low affinity inhibitory site. The relationship between initial rates and IP3 concentration was steep (Hill coefficient of 3.4), suggesting that activation of the calcium channel requires binding of at least 3 IP3 molecules. IP3 concentrations above 10 microM produced rapid decay of release rates, suggesting receptor inactivation. Superfusion with 10 microM IP3 under conditions that minimize calcium release ([Ca2+] < 1 nM) inhibited 45Ca2+ release in response to subsequent stimulation (400 nM Ca2+). These data suggest sequential positive and negative regulation of the hepatic IP3 receptor by cytosolic calcium and by IP3, which may underlie hepatocellular propagation of regenerative, oscillatory calcium signals.
منابع مشابه
How to Cite: Bcl-2 Functionally Interacts with Inositol 1,4,5- Trisphosphate Receptors to Regulate Calcium Release from the Er in Response to Inositol 1,4,5-trisphosphate
Chen, Rui; Valencia, Ignacio; Zhong, Fei; McColl, Karen S.; Roderick, H. Llewelyn; Bootman, Martin D.; Berridge, Michael J.; Conway, Stuart J.; Holmes, Andrew B.; Mignery, Gregory A.; Velez, Patricio and Distelhorst, Clark W. (2004). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. The J...
متن کاملNeuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia.
Both the cyclic adenosine 3',5'-monophosphate and the phosphoinositide second messenger systems are involved in olfactory signal transduction. The inositol 1,4,5-trisphosphate receptor is one of the principal intracellular calcium channels responsible for mobilizing stored calcium. The precise location of the 1,4,5-trisphosphate receptor (endoplasmic reticulum vs surface) and its role in the ev...
متن کاملStereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus.
It is well known that inositol 1,4,5-trisphosphate binding and release of calcium are mediated by the same protein. Several reports have indicated the location of the inositol 1,4,5-trisphosphate receptor in organelles other than endoplasmic reticulum. Immunocytochemical studies on the subcellular localization of 1,4,5-trisphosphate receptor in the Purkinje cells from two laboratories have give...
متن کاملExpression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat.
Release of intracellular Ca2+ is triggered by the second messenger inositol 1,4,5-trisphosphate, which binds to the inositol 1,4,5-trisphosphate receptor and gates the opening of an intrinsic calcium channel in the endoplasmic reticulum. In order to understand the importance of this mechanism in development, we have examined the distribution of the type 1 inositol 1,4,5-trisphosphate receptor d...
متن کاملProtein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 5 شماره
صفحات -
تاریخ انتشار 1997